Adjoints of Composition Operators on Standard Bergman and Dirichlet Spaces on the Unit Disk

نویسنده

  • CARLOS C. PEÑA
چکیده

It is not known a satisfactory way to compute adjoints of composition operators, yet in classical functional Banach spaces (cf. [3]). If K is the reproducing kernel of a functional Hilbert space H, g ∈ H and the composition operator Cφ is bounded then C∗ φg (z) = 〈g(t),K (z, φ (t))〉H , z ∈ D. In general, although reproducing kernels might be described in series developments, it is not possible to determine C∗ φ in a closed form. In this article we establish some formulae in order to evaluate adjoints of composition operators on standard Bergman and Dirichlet spaces.

منابع مشابه

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

A New Class of Operators and a Description of Adjoints of Composition Operators

Starting with a general formula, precise but difficult to use, for the adjoint of a composition operator on a functional Hilbert space, we compute an explicit formula on the classical Hardy Hilbert space for the adjoint of a composition operator with rational symbol. To provide a foundation for this formula, we study an extension to the definitions of composition, weighted composition, and Toep...

متن کامل

The Backward Shift on Dirichlet-type Spaces

We study the backward shift operator on Hilbert spaces Hα (for α ≥ 0) which are norm equivalent to the Dirichlet-type spaces Dα. Although these operators are unitarily equivalent to the adjoints of the forward shift operator on certain weighted Bergman spaces, our approach is direct and completely independent of the standard Cauchy duality. We employ only the classical Hardy space theory and an...

متن کامل

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003